
Nonexistence of isolated charged monopoles in unified field theories

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 394

(http://iopscience.iop.org/0022-3689/5/3/007)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/3
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., Vol. 5, March 1972. Printed in Great Britain 

Nonexistence of isolated charged monopdes 
in unified field theories? 

R TIWARI and D N PANT 
Department of Mathematics, Banaras Hindu University, Varanasi-5, India 

MS received 16 July 1971, in revised form 20 September 1971 

Abstract. The possibility of the existence of isolated electric charge giving rise to a spherically 
symmetric electrostatic field has been considered in each of the unified field theories of 
Einstein, Schrodinger and Bonnor. It has been proved that none of these theories admits 
such a possibility. 

1. Introduction 

On the assumption that the source of gravitational and electromagnetic effects produces 
a spherically symmetric field, Papapetrou (1948) has shown that the field tensor 

represents the most general total field in spherical polar coordinates x1 = r ,  x2 = 8, 
x3 = 4, x4 = t. Equation (1.1) has been of considerable importance in connection 
with the investigations of static spherically symmetric solutions in some unified field 
theories. Papapetrou (1948) examined (1.1) in the unified field theory of Schrodinger 
(1947) and gave exact solutions for two cases, namely (i) the purely electric case f # 0, 
o = 0 and (ii) the purely magnetic case f = 0, w # 0 which in the absence of the electro- 
magnetic field and for I = 0 reduce to Schwarzschild's solution in general relativity. 
Wyman (1950) and Bonnor (1951) obtained respectively real and complex solutions 
for the above two cases in the unified field theory of Einstein and Straus (1946) and 
discussed their physical significance. In order to avoid the physical drawback of the 
above solutions representing an isolated magnetic pole corresponding to case (ii) 
Wyman (1950) and Tonnelat (1955) felt that a more satisfactory conclusion could be 
drawn in the general case f # 0, w # 0. Accordingly Takeno et a1 (1951), Bonnor (1952) 
and Bandyopadhyay (1960) obtained general solutions for this case in the field theories 
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of Schrodinger (1947), Einstein (1951) and Einstein and Straus (1946) respectively. 
Ghosh (1955, 1956) obtained a more general solution in the theory of Einstein (1951) 
of which Bonnor’s solution (1952) happens to be a special case. Later on Godart (1961) 
and Vanstone (1962) gave general solutions to the field equations of Schrodinger (1947) 
and Einstein and Straus (1946) which contain the solutions of Papapetrou (1948), 
Wyman (1950) and Bonnor (1951) as special cases. None of these attempts have yielded 
physically significant results as the solutions obtained are not singularity free and they 
do not rule out the existence of a magnetic pole. Bonnor (1952) gave up all hopes for a 
physical solution in the general case and remarked that the only static spherically 
symmetric solutions likely to have any physical significance are those corresponding 
to an electric field alone. Ikeda (1954) proposed new boundary conditions to the solu- 
tions in the case of an electrostatic field by introducing electrostatic potential in the 
set up of unified field theories. Ikeda (1955) further showed that there exists no regular 
static spherically symmetric solution in the magnetic case satisfying his new boundary 
conditions which in turn proved the nonexistence of a single magnetic pole in the 
unified field theory of Einstein (1953). This result gave some indications to the physical 
base to a unified field theory. The question whether there exists a nontrivial static 
spherically symmetric solution that may represent the external field of an isolated 
charged monopole in the unified field theories is still to be answered. The exact solutions 
of Einstein’s and Schrodinger’s unified field theories given by Papapetrou (1948), 
Wyman (1950) and Bonnor (1951) in the case of the electrostatic field correspond to 
continuous charged distributions though the fields tend asymptotically to that of a 
point charge in classical theory. In the case of Bonnor’s theory (1954) the corresponding 
solution of the linear approximation to the field equations gives a charge density which 
decreases exponentially with distance (Abrol 1957). It was Moffat (1957b) who first 
obtained the spherically symmetric solution representing the field of an isolated charged 
particle at rest in his unified field theory (Moffat 1957a). One expects to get a Moffat-like 
solution in the other theories also. Our present investigation is to explore the possibility 
of the existence of isolated charged poles in the nonsymmetric field theories of Einstein 
(1953), Schrodinger (1947) and Bonnor (1954). 

The field equations considered here are as follows : 

r;s ” = o (1.3) 

Here p and I are constants. Rij is the usual contracted curvature tensor given by 

By taking p = 1 = 0 in (1.2) to (1.5) we get Einstein’s field equations. We get 
Schrodinger’s and Bonnor’s field equations by taking p = 0 and 1 = 0 respectively. 
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2. Preliminary calculations 

The total field considered here is given by 

where u, 8, 'p and f a re  functions of r alone. The contravariant g i j  is defined by (Einstein 
1953) 

gi&k = ai. 
The nonvanishing components of g'j are 

&3 = f 
(p2 + f ,) sin e '  

The chargesurrent vector density is defined by (Einstein 1953) 

(2.3) . s - 1 i k l s l  J - 6q i k l  

where qikls is Levi-Civita's tensor density antisymmetric in all indices and 

I i k l  = gi$l+gkJ,i+gIj,k* 

From (2.1) and (2.3) we find that the charge density is 

j 4  = f ' s ine  (2.4) 

where a prime denotes differentiation with respect to r. The external field of the isolated 
charged monopole is the vacuum electrostatic field characterized by 

j4 = 0. (2.5) 

f = constant. (2 .6)  

Hence it follows from (2.4) that 

The nonvanishing components of Rij  as calculated from (1.6) using (2.1), (2.6) and 
(1.2) are given by 

' B  
R,, = R33 cosec28 = - - f - --(fA+fiB) (E)' (:) 2u 

R,,= _ _ _  l ( Y ' ] '  + _ _ - _ - A  Y ' ( Y '  a' ) 2 a 2a 2y 2u 
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1 { (E)‘ (i)’ 2”, 2a RL3 = s i n e  - - -f - + - ( f B - f l A ) - - ( f A + B B )  

where 

3. Field equations in Einstein’s theory 

By taking p = I = 0 in (1.4) and (1.5) we get Einstein’s field equations in the form: 

RI1 = 0 R 2 ,  = 0 R4, = 0 R e  = c sin 8 (3.1) 

where c is an arbitrary constant. Taking proper linear combinations (Papapetrou 1948) 
of these we find that the simplified field equations are 

2a 
- B B - -  (cp-Cf2+2pf) = 0. 

B2+f2 
Equations ( 3 . 2 ~ )  and (3.2b) can be integrated at once giving 

and 

c1 and c2 being arbitrary constants. From (2.8),  (3.3) and (3.4) we obtain 

y’ = (y2(l)3’2/y. 
B2 +f 

Also from (3.2d) and (2 .8)  we have 

a = -  f (#v2 
2(cB2 - c f 2 + 2/3f) 

From (3 .3)  and (3.6) we find that 

( 3 . 2 4  

(3.2b) 

( 3 . 2 ~ )  

( 3 . 2 4  

(3.3) 

(3.4) 
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Differentiating (3.7) and comparing the result with (3.5) one gets 

(3.8) 
which gives either 

p‘ = 0 
or 

(3.9) 

p1i2 1 
2 3 1 2 ( ~ p 4 + 6 ~ f 2 p 2 +  8f3p-3cf4) = -Zf(cl02)”~. (3.10) 

We find in either case that p = constant. This leads to a = 0 which is physically in- 
admissible. 

(P+f 

4. Field equations in SchriSdinger’s theory 

In addition to equation (3.2~1) the other field equations in Schrodinger’s theory are 

y” y’ x’ y’ Y‘ -+- +A-+2Aa = 0 
;.) y 

p”- -p 1 , (---) a’ y’ + ~ ( A p 2 - p 2 - A p f + 2 p f c + f 2 )  2a = 0 
2 a y p + f 2  

(4.1 a) 

(4.lb) 

-f(B’)2 + 2a(2Apy- 2pf - cp2 + c f 2 )  = 0. (4 .1~)  

From (4.1~)  we find that 

f (P’I2 
2(2A/?2f - 2pf- cp2 + cf”)’ a =  

Also from (3.3) and (4.2) we have 

Substituting for a and y in (4 .1~)  we find on simplification 

p(p’)2 ((82f- 3c)p6 - 3 f 2p4(42 f + c) + 24 f ,p3 
C l f ( B 2 + f 2 )  

+f4p2(52Af-45c)-24f ’ p + 2 c f 6 }  = 0 

which will be satisfied if either 

p‘ = 0 (4.4) 
or 

p6(82f- 3 ~ )  - 3f2p4(4Af+ C) + 24 f 
+ f4p2(52Af- 4 5 ~ )  - 24f5p + 2~ f = 0. (4.5) 

Both the results (4.4) and (4.5) show that p is constant. We arrive at the similar con- 
clusion after considering the equation (4. lb). 
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5. Field equations in Bonnor’s theory 

From (1.7), (2.1) and (2.2) we have for the nonvanishing components of U i j  

a f  U , ,  =- 
P2 +f 

Pf 
P 2 + f 2  U Z 2  = cosec28 U,, = -~ 

f ( f 2  + 2P2) sin 6 
P2 +f U ,  = - Yf2 U,,= -~ 

P 2 + f 2  
The field equations of Bonnor’s theory therefore reduce to 

Rll+p2U11 = 0 

R,,+P’U,~ = 0 

Rz2+p2Uz2 = cosec26(R3,+p2U3,) = 0 

R, + p 2  U:, = c sin 8. 
(5.2) 

Taking linear combinations of these equations as before we obtain 

(3pfZpZ-p2+ f 2 + 2 P f c )  = 0 

-f(P)’ + 2a{ f ’(c + p 2 f )  - P2(c + 2p2f)  - 2P f } = 0 

in addition to ( 3 . 2 ~ ) .  From ( 5 . 3 ~ )  and (3 .3)  we obtain 

( 5 . 3 4  

(5.3b) 

(5.3c) 

Substituting a and y in either of the equations ( 5 . 3 4 ,  (5.3b) we arrive at a result similar to 
the previous sections. 

6. Conclusion 

In general relativity we have the Nordstrom solution (Eddington 1924) representing 
the spherically symmetric vacuum electrostatic field due to an electron. To get its 
analogue in the unified field theories of Einstein (1953), Schrodinger (1947) and Bonnor 
(1954) we consider the static spherically symmetric total field of Papapetrou (1948). 
We find that the field equations have no nontrivial solution for the external field of 
an isolated charged pole. This indicates the absence of isolated charged monopoles 
in the theories considered. 
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